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Abstract. Exact algebraic solutions of a one-dimensional finite-chain hard-core Bose–Hubbard
model with nearest-neighbour interactions, which is related to a state-dependent nuclear pairing
interaction with a nearest-state interaction approximation, are derived based on a simple algebraic
approach. Further extensions to arbitrary spin cases and the corresponding Fermi–Hubbard model
are also presented.

The Bose–Hubbard model [1] has attracted theoretical and experimental interest of late because
of its use in describing granular and short-correlation-length superconductors [2,3], Josephson
junction arrays [4, 5], and, most recently, cold atoms in optical lattices [6]. In each case, the
relevant particles—Cooper pairs or lattice fluxes—are, at least approximately, bosonic. A
similar situation occurs in the nuclear pairing problem in well-deformed nuclei, in which the
pairing interactions can also be described by a finite-chain hard-core Bose–Hubbard model.

Up to a constant, the Hamiltonian of the one-dimensional finite-chain hard-core Bose–
Hubbard model with nearest-neighbour hopping considered is

Ĥ =
∑
ij

tijPib
†
i bjPj (1)

where b
†
i , and bj are boson creation and annihilation operators, only tii , tii+1 and ti+1i are non-

zero parameters and Pi is a projection operator onto the subspace with no doubly occupied
sites, which may be defined as

Pi (. . . b
†ni

i . . .) =
{

0 for ni � 2

(. . . b
†ni

i . . .) otherwise
(2)

where (. . .) represent other boson creation operators. In this paper, it will be shown that
the finite-chain hard-core Bose–Hubbard Hamiltonian (1) can be solved by using a simpler
algebraic method.

Up to a normalization constant, it is easy to prove that the eigenstates of (1) for a k-particle
excitation can be expressed as

|k; ζ 〉 =
∑

i1<i2<···<ik

C
(ζ )

i1i2,...,ik
b

†
i1
b

†
i2
. . . b

†
ik
|0〉 (3)
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where |0〉 is the hard-core boson vacuum and C
(ζ)

i1i2...ik
is a determinant given by

C
(ζ)

i1i2,...,ik
=

∣∣∣∣∣∣∣∣

g
ζ1
i1

g
ζ1
i2

· · · g
ζ1
ik

g
ζ2
i1

g
ζ2
i2

· · · g
ζ2
ik· · · · · · · · ·

g
ζk
i1

g
ζk
i2

· · · g
ζk
ik

∣∣∣∣∣∣∣∣
(4)

where ζ is shorthand notation for a selected set of k eigenvalues of the t matrix, which can be
used to distinguish the eigenstates with the same boson number k, and gζp is the pth eigenvector
of the t matrix. Eigenvalues E(ζp) of the t matrix and the corresponding eigenvector gζp can
be obtained from the eigen-equation∑

j

tij g
ζp
j = E(ζp)g

ζp
i . (5)

The corresponding excitation energies can be expressed as a sum of k different eigenvalues
of the t matrix due to no double occupancy being allowed. Hence, the k-particle excitation
energy is given by

E
(ζ)

k =
k∑

j=1

E(ζj ). (6)

One can easily check that equations (3)–(6) are valid when t is Hermitian, which is now
assumed to be real for simplicity. Firstly, directly applying the Hamiltonian (1) on (3), one
gets ∑

p

∑
i,i1<i2<···<ik

C
(ζ )

i1i2,...,ik
tiip b

†
i1
b

†
i2
. . . b

†
ip→i . . . b

†
ik
|0〉 (7)

where ip → i means replacing the pth index ip by i, there is no restriction on index i and,
because of the projection operator P , no two indices ip and iq among {i1, i2, . . . , ik} can take
the same value. The tri-diagonal condition on the hopping matrix t , the strict ordering of the
indices in ansatz (3) and the projection operator P together enforce that

ip−1 < i < ip+1. (8)

Once (8) is satisfied, other conditions will either be obviously satisfied or lead to zero terms
in equation (7) because there is no pair of indices taking the same value among {i1, i2, . . . , }
with µ = ip or µ = i. Then, by eigen-equation, we have∑
iq

C
(ζ )

i1,...,iq−1iq iq+1,...,ik
tiµiq =

∑
P

(−)PE(ζP(µ))g
(ζP(1))

i1
g

(ζP(2))

i2
. . . g

(ζP(µ))

iµ
. . . g

(ζP(k))

ik
(9)

where P runs over all permutations (1, 2, . . . , k), E(ζµ) is the µth eigenvalue of the t matrix
and iq in the summation can only be taken to be iµ, iµ ±1, because the nearest-hopping matrix
is tri-diagonal. Hence, from equations (7) and (9) we finally get

Ĥ |k; ζ 〉 =
∑

i1<i2<···<ik

k∑
µ=1

∑
P

(−)PE(ζP(µ))

×g
(ζP(1))

i1
g

(ζP(2))

i2
. . . g

(ζP(µ))

iµ
. . . g

(ζP(k))

ik
b

†
i1
b

†
i2
. . . b

†
ik
|0〉 = E

(ζ)

k |k; ζ 〉 (10)

which is valid for any k, where E
(ζ)

k is still given by (6). It is clear that the wavefunctions
given by (3) are free from doubly occupied sites. It seems from equations (7)–(10) that the
coefficient C

(ζ)

i1i2,...,ik
could either be a permanent or a determinant of g

(ζp)

ik
. In fact, it should

be a permanent with no restriction on summation indices if there is no projection operator
involved in (1). Furthermore, it is well known that a permanent can be decomposed into sums
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of symmetric, non-symmetric and totally antisymmetric parts with respect to permutation of
indices. The non-antisymmetric components allow at least one pair of the indices among
{i1, i2, . . . , ik} to be the same, which must be the case if one takes the coefficient C

(ζ)

i1i2...ik

symmetric with respect to permutation of the indices. However, because projection (2) is
involved in Hamiltonian (1), other non-antisymmetric components must be set to zero. Hence,
the only allowed components, C(ζ)

i1i2...ik
, in ansatz (3) are totally antisymmetric with respect to

permutation of indices. The eigenstate equation (3) is obviously non-zero because the sum
runs over the indices {i1, i2, . . . , ik} with strict ordering.

If one assumes that the total number of sites is N , the k-particle excitation energies are
determined by the sum of k different eigenvalues chosen from the N eigenvalues of the t matrix.
Therefore, the total number of excited levels is N !/k!(N − k)!. Thus, the eigenvalue problem
of the one-dimensional finite-chain hard-core Bose–Hubbard model, of which the effective
Hamiltonian is given by (1), is simply solved.

The hard-core Bose–Hubbard model is also related to the nuclear pairing interaction. As
is well known, a constant strength-pairing interaction, which is used in many applications,
is not a particularly good approximation for well-deformed nuclei. In [7] a state-dependent
Gaussian-type pairing interaction with

Gαβ = Ae−B(εα−εβ )
2

(11)

was used, where εα and εβ represent, respectively, single-particle energies of states α and β.
The parameters A < 0 and B > 0 are adjusted in such a way that the location of the first
excited eigensolution lies approximately at the same energy as for the constant pairing case.
Of course, there is some freedom in adjusting the parameters, allowing one to control in a
phenomenological manner the interaction among the states that differ by larger amounts in
energy. Expression (11) allows one to model in a schematic way interactions between pairs
of single-particle states (α, β) that lie closest in energy. The scattering between particles
occupying such states will be favoured, whereas scattering between particles in states whose
energies are greater than these will be reduced. As an approximation, such a pair interaction
may be further simplified to the nearest-orbit interactions. Namely, Gαβ is given by (1) if two
states α and β lie closest in energy, with Gαβ taken to be 0 otherwise.

Let a†
i be the ith-orbital single-fermion creation operator, and a

†
ī

that of the corresponding
time-reversed state. The fermion pairing operator can be expressed as

b
†
i = a

†
i a

†
ī

bi = aīai (12)

which satisfy the following deformed boson commutation relations [8]:

[bi, b
†
j ] = δij (1 − 2Ni) [Ni, b

†
j ] = δij b

†
j [Ni, bj ] = −δij bj (13)

where Ni = 1
2 (a

†
i ai +a

†
ī
aī ), which is the pair number operator in ith orbit for even–even nuclei.

Because, at most, only one fermion pair or a single fermion is allowed in each orbit due to the
Pauli principle, these fermion pairs can equivalently be treated as exact bosons with projection
onto the subspace with no doubly occupied orbits if only pure-pair dynamics is discussed.
Hence, the pairing Hamiltonian in this case can be expressed as

Ĥpairing =
∑

i

′εi +
∑
ij

Ptij b
†
i bjP (14)

where the prime indicates that the sum runs over the orbits occupied by a single fermion which
occurs in the description of odd-A nuclei or broken pair cases, while these orbits should be
excluded in the second sum, tii = 2εi + Gii with Gii = A and εi the single-particle energy,
tii+1 = ti+1i = Gii+1, tij = 0 otherwise. It is obvious that (14) is a special case of the one-
dimensional hard-core Bose–Hubbard model [9], which differs from (1) only by a constant
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term. Generally, the main difference is that the t matrix elements tii+1 are all the same, tii = 0,
for the former, while, generally, tii+1 are different for different orbitals for the pairing model.
Furthermore, the number of orbits in the nuclear pairing model is finite, while the number of
sites in the Bose–Hubbard model is infinite with periodic condition, in general.

It is interesting to note that the above solutions of the eigenvalue problem of the hard-core
Bose–Hubbard model can be extended to both hard-core Bose–Hubbard and Fermi–Hubbard
models with arbitrary spin s for finite-site system, which leads to the following theorem.

Theorem. The excitation energies of both the Bose– and the Fermi–Hubbard models of spin
s with Hamiltonian given by

Ĥ =
∑
ij

tijPEijP (15)

where P is a projection operator on the subspace with no doubly occupied sites, tij =
tiiδji + tii+1δji+1 + tii−1δji−1 with 1 � i, j � N for finite-site system, and the U(N) generators

Eij =
s∑

σ=−s

f
†
iσ fjσ (16)

where f
†
iσ is the ith-site boson or fermion creation operator with spin component σ , are given

by a sum of k different eigenvalues chosen from the N eigenvalues of the t matrix in all possible
ways:

E
(ζ)

k =
k∑

i=1

E(ζi). (17)

The corresponding wavefunctions are given by

|k; ζ, (σ1σ2 . . . σk)〉 =
∑

i1<i2<···<ik

C
(ζ )

i1i2,...,ik
f

†
i1σ1

f
†
i2σ2

. . . f
†
ikσk

|0〉 (18)

where the expansion coefficients C
(ζ)

i1i2...ik
is given by the determinant (4) obtained according to

equation (5) for the Bose or Fermi case.

Equation (18) can further be labelled by the U(2s + 1) group chains. For example, one
can first rewrite (18) in terms of U(2s + 1) ⊃ U(2s) ⊃ · · · ⊃ U(1) canonical basis as

|k; ζ, [λ1, λ2, . . . , λ2s+1]w〉 =
∑

m;i1<i2<···<ik

C
(ζ )

i1i2...ik
a[λ]w
m |Y [λ]

m (ω;w)〉 (19)

where [λ] ≡ [λ1, λ2, . . . , λ2s+1] labels an irrep of U(2s+1) and its conjugate irrep [λ̃] labels an
irrep of U(N) simultaneously. m labels a special Gel’fand state of U(2s + 1) and the standard
basis of the symmetric group Sk simultaneously [10], ω ≡ (i1, i2, . . . , ik) are indices of the
corresponding boson or fermion creation operators, (ω;w) stands for filling k different indices
i1, . . . , ik into the Young tableau, after summing over these indices, substituting first f1 indices
i1, i2, . . . , if1 in the tableau by σ1, next f2 indices if1+1, . . . , if2 in the tableau by σ2, and so on,
which results in a corresponding Weyl tableau w labelling the irrep [λ] in the canonical basis
of U(2s + 1), and a[λ]w

m is the corresponding symmetrization coefficient [10] needed to map
the special Gel’fand basis into a desired configuration [λ]w of the U(2s + 1) Gel’fand basis.

In this case, there are two duality relations involved. [λ] labels an irrep of U(2s + 1),
while its conjugate [λ̃] labels that of U(N), because these two groups are in duality relation
resulting from the branching rule U(N(2s + 1)) ↓ U(N) × U(2s + 1). Furthermore, an irrep
[λ], with a Young diagram consisting of k boxes, of the symmetric group Sk , is also the same
irrep of U(2s + 1) because of the Schur–Weyl duality relation between the symmetric group
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Sk and the unitary group U(2s + 1) [10,11]. One can then construct the standard basis Y [λ]
m (ω)

of the symmetric group Sk , where Y [λ]
m (ω) is the Young tableau, and m is the index of the

tableau. It has been proven [11] that the standard basis Y [λ]
m of Sk is also a special Gel’fand

basis of U(2s + 1). In order to obtain a general Gel’fand basis labelled by the corresponding
Weyl tableau [λ](w) of U(2s + 1) from the standard basis of symmetric group Sk , one needs
to replace f1 indices i1, i2, . . . , if1 by σ1, and f2 indices if1+1, . . . , if2 by σ2, and so on. Then,
after the symmetrization, one obtains a desired Gel’fand basis of U(2s + 1) labelled by [λ]w.
This procedure for obtaining the special Gel’fand basis |Y [λ]

m (ω)〉 from the k-particle product
state f

†
i1σ1

f
†
i2σ2

. . . f
†
ikσk

|0〉 was outlined in [11].
The total spin S and its third component S0 of the system can be determined by the

branching rule of U(2s + 1) ⊃ SU(2) ⊃ U(1) with branching multiplicity τ of U(2s + 1) ⊃
SU(2). The final state with S and S0 being good quantum numbers can be obtained from (19)
through state transformation:

|k, ζ ; [λ]τSS0〉 =
∑
w

BτSS0
w |k, ζ ; [λ] w〉 (20)

where BτSS0
w is a matrix element of the transformation between the Gel’fand basis of U(2s + 1)

and the basis of U(2s + 1) ⊃ SU(2) ⊃ U(1).
The above theorem indicates that the one-dimensional finite-chain hard-core Hubbard

models with nearest-neighbour hopping for both the Bose and Fermi cases have the same
feature except for the permutation symmetry with respect to site exchange.

In summary, simple exact algebraic solutions of the one-dimensional finite-chain hard-
core Bose–Hubbard model, which is related to the state-dependent nuclear pairing interaction
with a nearest-orbit interaction approximation, have been derived. These results may be
useful for understanding physical properties of the nuclear pairing in well-deformed nuclei.
It has been shown that the excitation spectra and corresponding wavefunctions of the Bose–
Hubbard model are identical to those of the corresponding Fermi–Hubbard model except
for the site permutation. The results can easily be extended to arbitrary spin cases. In the
pairing interaction for well-deformed nuclei, one still needs to check whether the nearest-orbit
interaction is a good approximation or not. It is expected that the nearest-state interaction
can be applied, at least to some well-deformed regions in which the parameter B in (11) is
not small and the single-particle levels are well separated. Research work in this direction is
in progress. On the other hand, though there are formulae for exact solutions of the nuclear
pairing interaction for many cases [12–17] based on nonlinear Bethe equations, to solve these
nonlinear equations is time consuming and not easy when the number of excited pairs k and total
number of orbitals N are large, which is often the case for well-deformed nuclei. Nevertheless,
numerical calculation of the eigenvalue problem (5) is simple and fast, from which the results
determine all the excitation energies and the corresponding wavefunctions for any k according
to equations (3)–(6). The results provide another limit situation, in contrast to the constant
strength pairing approximation. In addition, the model can easily be used to test various
approximation methods for solving the same problem.
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